A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

نویسندگان

  • Yunfei Zhang
  • Zonglun Liu
  • Kui Yang
  • Yi Zhang
  • Yongqian Xu
  • Hongjuan Li
  • Chaoxia Wang
  • Aiping Lu
  • Shiguo Sun
چکیده

Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse.

متن کامل

Cu(II) Ion- Selective Membrane Electrode Based on bis(N-salicylidene-3,3'-diamino diphenyl) sulfone

In order to study the Cu(II) ion selective electrode, an optimized membrane was prepared by mixing of 30 mg of PVC powdered, 5 mg of considered ionophore, 60 mg of plasticizer and 5 mg of additive. The sensor showed a near Nernstian response for Cu(II) ions over a concentration range from 1.0×0-6 –1.0×0-2 M with a slope of 28.90.5 mV per concentration decade with a working pH range of 3.5-6.3. ...

متن کامل

A bibenzimidazole-containing ruthenium(II) complex acting as a cation-driven molecular switch.

Multinuclear ruthenium polypyridyl complexes are currently the subject of extensive investigations, their photophysical properties making them ideal components for photochemically and electrochemically driven molecular devices.1 Among these compounds, mononuclear ruthenium complexes containing biimidazole or bibenzimidazole (bibzimH2) type ligands2 have been shown to be excellent building block...

متن کامل

A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging.

We report a novel ruthenium(II) complex for selective release of the imidazole-based drug econazole. While the complex is highly stable and luminescent in the dark, irradiation with green light induces release of one of the econazole ligands, which is accompanied by a turn-off luminescence response and up to a 34-fold increase in cytotoxicity towards tumour cells.

متن کامل

Development of a functional ruthenium(II) complex for probing hypochlorous acid in living cells.

A functional ruthenium(ii) complex, [Ru(bpy)2(AN-bpy)](PF6)2 (bpy: 2,2'-bipyridine, AN-bpy: 4-methyl-4'-(4-amino-3-nitro-phenoxy-methylene)-2,2'-bipyridine), has been designed and synthesized as a turn-on luminescent probe for the imaging of hypochlorous acid (HOCl) in living cells. Due to the intramolecular photoinduced electron transfer (PET), the ruthenium(ii) complex itself is almost non-lu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015